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Maximisation of the entropy in non-equilibrium 
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Technische Siniversitat Berlin, Hermann-Fottinger-Insti tut  fur Thermo- und Fluiddynamik, 
Strasse des 17 Juni,  D-1000 Berlin 12, West Germany 

Received 10 June 1986, in final form 9 March 1987 

Abstract. This paper  proves that the maximisation of the entropy in non-equilibrium is 
equivalent to the exploitation of the entropy inequality in extended thermodynamics.  

1. Introduction 

This paper proves that the maximisation of the entropy in non-equilibrium is equivalent 
to the exploitation of the entropy inequality in extended thermodynamics. 

A kinetic theory of a given material yields moments of the phase density f and 
equations of transfer for those moments. In thermodynamics one usually takes some 
of these moments as basic variables, namely those for which initial and boundary 
conditions can be prescribed. The field equations of these variables are based on the 
equations of transfer which, however, contain higher moments and  collision rates. 
These additional quantities must be determined by constitutive relations. 

If the phase density were known as a function of the basic variables then the 
constitutive quantities could also be determined in terms of their dependence on the 
basic variables. Explicit constitutive relations for ideal gases can be calculated in this 
manner. 

This work has been motivated by the observation-made by Kogan [l]-that the 
thirteen-moment phase density of Grad [ 2 ]  maximises the entropy. This is an extension 
to non-equilibrium processes of the Boltzmann method by which the phase density f 
for an  ideal gas in equilibrium can be obtained by maximising the entropy under the 
constraints of fixed mass density p, momentum density pu and internal energy density 
PE.  In non-equilibrium, further moments o f f  (e.g. pressure deviator P and heat flux 
q )  contribute to the state of the gas. I f  one determines the function f that maximises 
the entropy for given values of ( p ,  pu, P E ,  P, q )  one obtains Grad’s thirteen-moment 
phase density, provided that f is assumed to be a linear function of the non-equilibrium 
quantities P and q. 

The question arises whether this may be justified, since all we d o  know is that there 
exists an entropy inequality in non-equilibrium. 

In this paper we prove for a degenerate ideal gas that the exploitation of the entropy 
inequality-for an even more detailed description of the non-equilibrium state, e.g. by 
p, pv, PE,  P, q and higher moments-and the maximisation of the entropy leads to the 
same results as follows. In the first method we choose a finite number of moments as 
basic variables for an ideal gas and identify the constitutive quantities. The entropy 
inequality implies restriction on the constitutive functions. In the second method the 
phase density for the same variables is calculated by the maximisation of the entropy 
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of a degenerate ideal gas. By use of this phase density we calculate the constitutive 
quantities. 

It proves that all restrictions of the first method are included in the constitutive 
functions resulting from the second method. The theory as a whole emphasises a 
far-reaching parallelism between the reasoning of statistical thermodynamics and  
phenomenological thermodynamics. Indeed, the well known Lagrange multipliers of 
the statistical theory prove to be identical to the Lagrange multipliers that were utilised 
in the evaluation of the entropy inequality. 

This paper is divided into three further sections and three appendices. In § 2 a 
short survey of the fundamentals and the nomenclature of the kinetic theory of ideal 
gases is given. In § 3 the procedure of phenomenological extended thermodynamics 
is described. The main part of this paper is included in § 4. The maximisation of 
entropy in non-equilibrium is carried out and the equivalence to the phenomenological 
approach is proved by use of some lemmas that are derived in appendix 1. 

1.1. Notations 

Throughout this paper the tensor index notation is used. A tensor T'"" of rank M is 
represented by its components Tilw:,, with respect to a Cartesian inertial frame of 
reference. Traces of a tensor T' .M ', e.g. TilM i,, ~ , ,  or TIIM 'I,, 1,,,, are denoted by Ti,M : w - 2  

and TilMi,-4, respectively. 
The symmetric, traceless symmetric and  antisymmetric parts of T' M, are denoted 

by 7-1 9 T { y ' , w )  and T!r) ,wl ,  respectively. General symmetrisation means 
summing for all permutations of indices and dividing by M ! .  

2. A reminder of the kinetic theory of gases 

The microstate of a monatomic ideal gas is described by the phase density f(x, c, t )  
which gives the number density of atoms in the neighbourhood d'x d3c  of the phase 
space point (x, c ) : =  (position, velocity) at time t .  The phase density obeys the 
Boltzmann equation 

a f  a f  a f  -+ C, - + c, - = l( f , 
at ax, ac, 

where 5 denotes the collision operator. In addition we impose the condition on f that 

where P must be a polynomial in c and a > 0. 

cp, are defined as 
The moments F:,w,'w of the phase density, the entropy density and the entropy flux 

F;,'',;! := m c , ~ .  . .c,,  , f d'c (2.3) 

s := - k  [ f I n f l . v + Y ( l  * f l y )  In(1 * f ly ) ]  d3c  (2.4) 

cp, := - k  j c,[f I n f l y F y ( 1  * f ly )  In(1 * f l y ) ]  d3c (2.5) 

I 



Maximisation of the entropy in non-equilibrium 6507 

where m is the mass of an  atom. The upper and lower signs in (2.4) and (2.5) correspond 
to bosons and  fermions, respectively. y is a constant which is given by ( 2 s + l ) / h 3  
where s is the spin number. Boltzmann’s constant is denoted by k and h is Planck’s 
constant. 

The Boltzmann equation yields the so-called equation of transfer and the entropy 
inequality 

as ap -+-20 
at ax, 

(2.6) 

(2.7) 

SitM,’,, denotes the collision rate of the M’th moment 

siIM/,, := m J c,, . . . i,, i ( f )  d3c. (2.8) 

The first thirteen moments have physical significance because the following interpreta- 
tions hold: 

mass density F‘Ol ._ , . -P 

Fi”:= P V !  momentum density 

F%’ := PV,V,  + p,, 
F i 7 ’ : = p ( & + 4  u’)v,+q,+P,q energyflux. 

(2.9) 
momentum flux 

We have decomposed Ff)  and Fi3’ into convective parts and the non-convective 
quantities: pressure tensor P,,, internal energy density P E  and heat flux q,. The pressure 
tensor is usually decomposed as 

PI, = p,,, + PSI, with p := 4 P,, = ; p& (2.10) 
where P( ,J)  denotes the pressure deviator and p is the pressure. 

with the excess velocity C := c - t’: 
These quantities are directly related to the so-called central moments o f f  formed 

milu,’,, := m C,, . . . C,,, f d’C. (2.11) I 
It follows that we have 

(2.12) “ O ’ =  

Furthermore the equations of transfer for the momentum and the other central moments 
are 

“‘I - 
“1  -‘<tJ, m ‘ ? ’  = 2p.5 I - 2 % .  “ ? I  - P m:“ = 0 

(2.13) 

(2.14) 

where Sl,”,‘b, is the collision rate of the central moments. 

T External forces haLe been ignored. 
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For more details the reader is referred to the many textbooks on kinetic theory, 
such as Chapman and Cowling [3]. 

3. Thermodynamics 

3.1. The thermodynamic state of a gas 

Thermodynamics restricts itself to the determination of some lower moments off: This 
is possible because in ii process close to equilibrium only a few moments are needed 
to describe that process satisfactorily. 

Dejnition. A thermodynamic process in a gas is said to be of grade N if the first N 
moments are needed for its description. The set of necessary variables for the descrip- 
tion of the process of grade N is called the state of the gas and  is denoted by 

(3.1) ( iLf I zN = (m"",  pull, m:$ ,  . . . , ,, ,,,I 
consisting of all N components of the first M moments. 

Remarks. For example, an  equilibrium state of a gas is a process of grade 5 and its 
state is given by 

(3.2) 

All processes for N :> 5 are non-equilibrium processes. The decision about the 
appropriate N for a given thermodynamic process has to be made empirically. 

z5 = ( P ,  P I U , ,  P E ) .  

3.2. Thermodynamics cf processes of grade N 

The general purpose 01' thermodynamics is the determination of processes of grade N. 
The set of variables is given by (3.1) and the necessary field equations are based on 
the corresponding N equations of transfer (2.14) and (2.15). Inspection of these 
equations of transfer reveals that we are confronted with a closure problem, because 
they contain the unknown fluxes mllbf:Jil and the collision rates S),",', ( M ' =  
3 , 4 , .  . . , M). This closure problem is solved in thermodynamics by the following 
assumption. 

Assumption. The unknown quantities are functions of the state Z,,. They are given 
by constitutive equations of the form 

milM:Jl, = &:~T$: : , ( z ,  ) s:l";v = $,k'; ,  (Z , )  M ' = 3 , 4  , . . . ,  M. (3.3) 
By use of (3.3) we can eliminate the unknown fluxes and collision rates in (2.15) and 
obtain a set ofafield equations for the N basic fields provided the constitutive functions 
&'M' l l  and S:M,:, are known. 

1 ,  I * f  - 1  

Remark. We have selected the special case that the state contains the full moments 
up to a given order M which we shall proceed to investigate. There are, however, 
alternatives and in fact the most common cases of N = 13 and N = 14 provide such 
alternatives. For a discussion of this point see appendix 2. After this remark we 
continue with (3.1) and (3.3). 



Maximisation of the entropy in  non-equilibrium 6509 

The generality of the constitutive equations (3.3) is restricted by two principles. 
It follows from the principle of Galilean invariance that the constitutive quantities 

cannot depend on the velocity U, and moreover that principle states that the constitutive 
functions must be isotropic ones. 

The entropy principle states [4] that the entropy density and the non-convective 
entropy flux are constitutive quantities given by 

s = S*(Z,) 0, = Cf ) , (&J  (3.4) 

and that s and obey the entropy inequality 

as a -+ - ( s u ,  + 0,  
a t  ax, 

3 0 (3.5) 

for all solutions of the field equations. 
Note that (3.5) need not hold for all fields m'", m i : ) ,  . . . , m ~ l M ~ ,  but only for those 

which satisfy the field equations. The field equations are therefore to be considered 
as constraints. One can dispose of these constraints by use of Lagrange multipliers as 
introduced by Liu [5] who proved the following proposition. 

Proposition. If ( 3 . 5 )  holds only for solutions of the field equations then the following 
inequality holds for arbitrary fields: 

as a -+- ( su ,  +a,) -A: -+- ( puav/ + Pl,, 
at ax, a:, 

The Lagrange multipliers A:, A:lM,L may be functions of Z , .  

The evaluation of an  inequality of the type (3.6) has been carried out by Liu and 
Muller [ 6 ] .  It has transpired that the following relations must hold because otherwise 
(3.6) could be violated: 

M 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.1 1) 

(3.12) .I: = o  
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Remark. The conditions (3.7)-(3.12) represent all restrictions imposed by the entropy 
inequality upon the constitutive functions except for a residual inequality which restricts 
the collision rates. Those restrictions, however, d o  not interest us here. 

Before one can extract the desired restrictions from (3.7)-(3.12) upon the constitutive 
functions all Lagrange multipliers must be eliminated. This is a long cumbersome 
procedure which Liu and  Muller [6] and Kremer [7] have illustrated for the thirteen- 
moment and  the fourteen-moment cases, respectively. 

Having concluded the derivation of the phenomenological restrictions on the 
constitutive relations we now proceed to find the corresponding restrictions implied 
by the statistical method. 

4. Maximisation of the entropy in non-equilibrium 

4.1. Phase density for a process of grade N 

The statistical analogue to the thermodynamic description by the state Z ,  is an  
assumption that the dependence o f f  on x and  r is in fact a dependence on Zy(x ,  t ) :  

(4.1) 

where (4.1) denotes the phase density of a thermodynamic process of grade N. 
Iff were known explicitly we could calculate those moments off which are regarded 

as constitutive quantities in thermodynamics. In addition we should be able to calculate 
the collision rates. The determination o f f  makes use of the following assumption. 

f =f(x, c, t )  =P(Z,Cx, I), c )  

Assumption. The phase density f is the one which maximises the entropy (2.4). 

4.2. Scope of this section 

We shall proceed from the above assumption to calculate f by maximising s under 
the constraints of constant values of Z N .  Lagrange multipliers A will take care of these 
constraints in the maximisation procedure and  will appear in f .  

A 

Once f has been determined we shall show that the quantities 

m::::, = m C,,. . . C,,.f d'C M'=O,  1 , .  . . , M+1 (4.2) 

(4.3) 

cDt = - k  C , [ f I n . f / . y F y ( l * . f / ? ' )  In( l*f /y)]  d3C (4.4) 

s = - k  J [ f I n f / y T y ( l  +flu) 1n(1 *f/y)] d 3 C  

I 
calculated with this f satisfy the same equations as the thermodynamic variables and  
constitutive quanties m'"*", s and Q, and the thermodynamic Lagrange multipliers 
AIM') ,  namely (3.7)-(3.11). 

It will thus become clear that the above assumption was a good one in the sense 
that the maximisation of the statistical entropy leads to the same results as the 
exploitation of the thermodynamic entropy inequality. 
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It will turn out that the statistical approach yields more information than the 
thermodynamic one. In this paper, however, we concentrate p n  the results common 
to both methods. The full exploitation of the knowledge o f f  will be described in a 
forthcoming paper by Dreyer and Strehlow [8]. 

4.3. Maximisation of the entropy under constraints 

We are looking for the phase density that maximises the entropy under the constraints 
of given values of 

m'M ' = m C,, . . . C,, f d3C M'=O, 1 , 2 , .  . . , M. (4.5) 

We can get rid of these constraints by introducing Lagrange multipliers A::,),, . 
Therefore 

1 ,  1w I 
(4.6) 

has to be maximised without constraints. The necessary condition for a maximum of 
G is aG/af = O  and with s given by (4.3) that condition becomes 

Inf /y- ln( l*f /y)  = -1 (4.7) 

or 

f = y/exp(X* 1) 

where Z is defined as 

(4.8) 

The constraints (4.5) are linear functionals o f f  so that the sufficient condition for a 
maximum is simply given by 

(4.10) 

One can easily show that 

f l  1 
for bosons 

for fermions 
(4.11) 

holds. This is always smaller than zero for the Bose case, 
where one has to take into account that f / y c  1 .  

4.4. Conclusions 

as well as for the Fermi case 

Oncef has been determined by (4.8) we may introduce it into the expressions (4.2)-(4.4) 
to obtain the moments, the entropy density and the entropy flux. 
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Proposition. 

or 

and 

or 

. . .  , M + 1  (4.12) 

( 4 . 1 3 ~ )  

(4.13 b) 

( 4 . 1 4 ~ )  5 M 

@,= A ~ , ' / u m ~ l M , ~ ' ~ * k y  C , I n ( l i j / y ) d 3 C  
M =O 

(4.146) 

Proof. Equations ( 4 . 1 3 ~ )  and ( 4 . 1 4 ~ )  require the use of I n f l y  -In( 1 * f l y )  = -X (see 
(4.7)). The validity of the transition between (4.13a), ( 4 . 1 4 ~ )  and (4.13b), (4.146) is 
proved in appendix 1 by use of the requirement (2.2) (lemma (A1.13) and (A1.14)). 

Among equations (4.12) the first N may in principle be used to calculate the Lagrange 
multipliers and  the remaining ones determine the constitutive quantities m ' M + l ' .  This 
can only be done in an approximate manner. A special case is described in [6]. 

4.5. Comparison with thermodynamics 

For a comparison of the results (4.12)-(4.14) of the maximisation procedure and the 
results (3.7)-(3.11) of thermodynamics we need to calculate d s  and  d@,. 

Proposition. 

(4.15) 

(4.16) 

Proof. We form the total differential of s, given by (4.13a), and after replacing 
d I In(1 * f l y )  d 3 C  by lemma (Al .1 )  we end up  with (4.15). Equation (4.16) is proved 
as follows. We form the total differential of Q,, given by (4.14a), and after replacing 
d 5 C, In( 1 * f l y )  d 3 C  by lemma (A1.2) we have 

M 

d@, = dm;?,:,'; (4.17) 
M = ( I  

or with mi"=O 
M 



Maximisation of the entropy in non-equilibrium 6513 

Finally, by use of lemma (A1.15), we can express A:" by the other Lagrange multipliers 
and obtain (4.16). 

Inspection of (4.15) and (4.16) shows that these formulae are formally identical to 
the relations (3.7) and (3.8) of thermodynamics. The remaining equations (3.9), (3.19) 
and (3.11) also have their statistical counterparts. Thus s, given by (4.136), compares 
with (3.9). The traceless symmetric part and  the antisymmetric part of (A1.13) that 
occurred in the proof of (4.13b) are analogous to the thermodynamic equations (3.10) 
and ( 3 . 1 1 ) .  For easy reference we rewrite the three equations (4.13b), (A1.13) (traceless 
symmetric part) and ( A l .  1 3 )  (antisymmetric part) here: 

(4.19) 

(4.20) 

(4.21) 

The full set of equations (4.17)-(4.21) is completely analogous to the set (3.7)-(3.11) 
of thermodynamics. Some of equations (3.7)-(3.11) are used in thermodynamics to 
determine the Lagrange multipliers A'."'. Similarly the corresponding equations in 
the set (4.17)-(4.21) may be used to determine the Lagrange multipliers A'"'. 

Since the two sets of equations are identical so are the Lagrange multipliers AiM" 
and A ( M " .  

The proof of the identity of the statistical and thermodynamic Lagrange multipliers 
was one of the objectives of this paper. 

This identity of Lagrange multipliers does not mean that thermodynamics and 
statistical mechanics obtain the same number of results. In fact, statistical mechanics 
obtains more results than thermodynamics. 

In particular equations (4.12) d o  not come out in thermodynamics. N of these 
equations may be used to calculate the Lagrange multipliers and the remaining ones 
furnish the constitutive functions m i M + ' ) .  Once the Lagrange multipliers and hi'"'' 
are known we can use (4.13b) and (4.146) to calculate s and a. (Note that in 
thermodynamics we can only calculate the derivates of m ( M + ' l  and a.) 

Appendix 1. Some useful lemmas 

The proof of (4.15)-(4.21) is easily performed by the following lemmas. 

Lemma. 

l M  

y k  U =o  
In(1 * f l y )  d 3 C  = 7- m:,M,',, dA/lM,', ( A l . l )  

(A1.2) 

Proof The integral 5 In( 1 f f l y )  d 3 C  is a function of the N Lagrange multipliers, so 
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we can write 

d 
1 

In(1 * f ly )  d 3 C  = F- 5 Y 

(A1.3) 

(A1.2) is proved in an  analogous manner. 

Lemma. 

(A1.4) 

(A1.5) 

(A1.6) 

Proof: We have imposed the condition on f that it must vanish sufficiently strongly in 
the limit c + * m  (see (2.2)). Relations (A1.6) are based on this fact. Consequently 
we have 

By use of 

then (A1.4) is proved and  (A1.5) follows in an  analogous manner. 
In order to prove (A1.6) we start with 

a C ' I ' * '  c ' , fd 'C=5 (C l? .  . . C,,61,,+C,IC,,  . . . C,,6,,,+. . . ) fd3C 
a c, 

a f  
a c, +I C,, . . . C,, - d'C. 

This can also be written as 

From 

we conclude that 

k ax af af - CaI . . . C,,, - 
m ac, ah:,"',), a c, 

(Al .7 )  

(A1.8) 

(A1.9) 

( A l .  10) 

( A l . l l )  

(Al .12)  
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holds. Now we replace the expression under the integral in (A1.lO) by the left-hand 
side of (A1.12) and obtain (A1.6). 

Although m ( - ' )  is not defined, (A1.6) is valid for M '  = 0 too, since the first integral 
on the right-hand side of (A1.9) does not occur for M ' = O .  

Lemma. 

ProoJ: Differentiation of C, given by (4.9) with respect to Ci yields 

(Al.13) 

(Al .  14) 

(Al .  15) 

(Al.16) 

After replacing aC/aC, under the integrals in (A1.4) and  (A1.5) by (A1.16) we obtain 
(A1.13) and (A1.14). 

In order to prove (A1.15) we start with (A1.6) which can also be written in the form 

(Al.17) 

Due to (A1.16) the last integral (A1.17) can be reduced to 

(Al.18) 

which gives just the first term in (A1.17). Both terms cancel each other and  we have 

( M  - 1 1  
= M",,] I, -,at, ) I  

Now we replace dC/aC; by (A1.16) and obtain 

(A1.19) 

(A1.20) 

We conclude that the term within the bracket must be independent of AIYI , ,  . For 
A:" = O  and A::,), = 0 ( M ' =  3 , 4 , .  . . , M )  that term is identically zero, whence (A1.15) 
is proved. 

Appendix 2. The thirteen-moment case 

U p  to now we have considered the case that the state of the gas is characterised by 
the full moments up to a given order M and the constitutive quantities are the 
components of the ( M  + 1)th moment. 
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There are, however, other possibilities to characterise a state. In particular, proces- 
ses of grade N = 13 were treated by Grad [2] in the kinetic theory and by Liu and 
Muller [6] in phenomenological thermodynamics. The state is 

z,?= (m“’ ,  PO,, ml,”, mi”) = ( P ,  PO,,  PE, P<,, ,  9 , )  

and the constitutive quantities are 

4;;) = fi:&(z,J mip’ = r i : : ) ( ~ , ~ )  
( 3 )  - * (1 )  s:;’, = s;;;(ziJ SI -s, (Zi.3). 

In this case only a part of the third moment, namely mi“ = 2q,, is considered to be a 
variable. Consequently we only need the trace of the equation of transfer for the third 
moment as a basis for a field equation. 

The restrictions (3.7)-(3.13) imposed by the entropy inequality were derived under 
the assumption that Z, contains only full moments. 

In order to treat a case like ZN =Zij one has to change (3.7)-(3.13) as follows. 
ml,” and the corresponding Lagrange multiplier A:$ are decomposed as 

,,,(3l yk = ,,,(3) ( y k > + f  (mi”8,k + m:3’8~k + “k3’8,) (A2.1) 

.I:;;= Ai;:,++ (.4:3’8,k+12:3381k +24i3’8,,). (A2.2) 

Since the equation of transfer for m{i: ,  is no longer taken into account, A!,” in 
(3.7)-(3.13) has to be replaced by (A2.2) and Ai;;) is set equal to zero. Furthermore 
m$‘ has to be replaced by (A2.1) with m:$,  = h!~{i;)(Z,~). 

Appendix 3. Some remarks on the behaviour off in the limit c + f o o  

For c +  *cc, f assumes the asymptotic form 

Let us compare (A3.1) with imposed condition (2.2) on fx 

 AX, C, t )  c l ~ ( x ,  C, 1)l exp(-a(x, t)c2). 

(A3.1) 

(A3.2) 

If M is an even number and if the matrix AllM:, is positive definite, then (A3.2) is 
satisfied. 

If M is an uneven number or if the positive definiteness of AllM:, is not guaranteed, 
then (A3.2) can be satisfied in the following way. 

We split 1 into an equilibrium part A~0’+Ah2’C2 and a non-equilibrium part e. Abo) 
and Ab“’  denote the equilibrium parts of A ’ ”  and A‘”,  respectively. (A3.1) can now 
be written as 

(A3.3) 
The A contained in 5 correspond to the non-equilibrium moments and in a process 
close to equilibrium we assume them to be small since the non-equilibrium moments 
are small. 

fx = y exp[-(A~’+Ab’’C*)] exp(-2). 

Now we expand the asymptotic form o f f  as 

fi = y exp(-Ab”’+ Ah2’C2) (A3.4) 

If we break off this expansion after some finite number of terms, then (A3.2) is satisfied. 
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Just this procedure is carried out in the paper by Dreyer and Strehlow [8], where 
the A will be explicitly derived as functions of 2,3 up to a second order in P,,, and qt .  
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